MAMIBIA UCIVERSITY
OF SCIETCE ATD TECHHOLOGY
FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES
SCHOOL OF NATURAL AND APPLIED SCIENCES
DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION:	BACHELOR OF SCIENCE IN APPLIED MATHEMATICS AND STATISTICS	
QUALIFICATION CODE:	07BAMS	LEVEL: 7
COURSE CODE:	TSA701S	COURSE NAME:
SESSION:	JUNE 2023	PAPER:

1ST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Dr. Jacob Ong'ala
MODERATOR	Prof. Lilian Pazvakawambwa

INSTRUCTION

1. Answer all the questions
2. Show clearly all the steps in the calculations
3. All written work must be done in blue and black ink

QUESTION ONE - 20 MARKS

The data in the table below shows the exchange rate between the Japanese yen and the US dollar from 1984-Q1 through 1994-Q4.Use the data shown in the table below to answer the questions that follow.

Period	Actual			Period
			Actual	
Mar-88	124.5		Mar-91	140.55
Jun-88	132.2		Jun-91	138.15
Sep-88	134.3		Sep-91	132.95
Dec-88	125.9		Dec-91	125.25
Mar-89	132.55		Mar-92	133.05
Jun-89	143.95		Jun-92	125.55
Sep-89	139.35		Sep-92	119.25
Dec-89	143.4		Dec-92	124.65
Mar-90	157.65		Mar-93	115.35
Jun-90	152.85		Jun-93	106.51
Sep-90	137.95		Sep-93	105.1
Dec-90	135.4		Dec-93	111.89

(a) Plot the data
(b) Estimate a triple exponential smoothing model with a smoothing parameter $\alpha=0.6$., $\beta=0.8$. and $\gamma=0.1$.
(c) Plot the smoothing model on the same graph in (a) above
(d) Compute the mean square error for the model in (b) above

QUESTION TWO - 20 MARKS

A first order moving average $M A(2)$ is defined by $X_{t}=z_{t}+\theta_{1} z_{t-1}+\theta_{2} z_{t-2}$ Where $z_{t} \sim$ $W N\left(0, \sigma^{2}\right)$ and the $z_{t}: t=1,2,3 \ldots, T$ are uncorrelated.
(a) Find
(i) Mean of the $M A(2) \quad[2 \mathrm{mks}]$
(ii) Variance of the $M A(2) \quad[6 \mathrm{mks}]$
(iii) Autocovariance of the $M A(2) \quad[8 \mathrm{mks}]$
(iv) Autocorrelation of the $M A(2) \quad[2 \mathrm{mks}]$
(b) is the MA(2) stationary? Explain your answer [2 mks]

QUESTION THREE - 22 MARKS

Consider $\operatorname{AR}(3): Y_{t}=\phi_{1} Y_{t-1}+\phi_{2} Y_{t-2}+\phi_{3} Y_{t-2}+\varepsilon_{t}$ where ε_{t} is identically independently distributed (iid) as white noise.The Estimates the parameters can be found using Yule Walker equations as

$$
\begin{aligned}
& \left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\phi_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & \rho_{1} & \rho_{2} \\
\rho_{1} & 1 & \rho_{1} \\
\rho_{2} & \rho_{1} & 1
\end{array}\right)^{-1}\left(\begin{array}{l}
\rho_{1} \\
\rho_{2} \\
\rho_{3}
\end{array}\right) \text { and } \\
& \sigma_{\varepsilon}^{2}=\gamma_{0}\left[\left(1-\phi_{1}^{2}-\phi_{2}^{2}-\phi_{3}^{2}\right)-2 \phi_{2}\left(\phi_{1}+\phi_{3}\right) \rho_{1}-2 \phi_{1} \phi_{3} \rho_{2}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \hat{\hat{\rho}_{h}}=r_{h}=\frac{\sum_{t=1}^{n}\left(X_{t}-\mu\right)\left(X_{t-h}-\mu\right)}{\sum_{t=1}^{n}\left(X_{t}-\mu\right)^{2}} \\
& \hat{\gamma_{o}}=\operatorname{Var}=\frac{1}{n} \sum_{t=1}^{n}\left(X_{t}-\mu\right)^{2} \\
& \mu=\sum_{t=1}^{n} X_{t}
\end{aligned}
$$

Use the data below to evaluate the values of the estimates $\left(\phi_{1}, \phi_{2}, \phi_{3}\right.$ and $\left.\sigma_{\varepsilon}^{2}\right)$

t	1	2	3	4	5	6	7	8	9	10
X_{t}	24	26	26	34	35	38	39	33	37	38

QUESTION FOUR - 18 MARKS

Consider the ARMA(1,2) process X_{t} satisfying the equations $X_{t}-0.6 X_{t-1}=z_{t}-0.4 z_{t-1}-$ $0.2 z_{t-2}$ Where $z_{t} \sim W N\left(0, \sigma^{2}\right)$ and the $z_{t}: t=1,2,3 \ldots, T$ are uncorrelated.
(a) Determine if X_{t} is stationary
(b) Determine if X_{t} is casual
(c) Determine if X_{t} is invertible
(d) Write the coefficients Ψ_{j} of the $M A(\infty)$ representation of X_{t}

QUESTION FIVE - 20 MARKS

(a) State the order of the following $\operatorname{ARIMA}(\mathrm{p}, \mathrm{d}, \mathrm{q})$ processes
(i) $Y_{t}=0.8 Y_{t-1}+e_{t}+0.7 e_{t-1}+0.6 e_{t-2}$
(ii) $Y_{t}=Y_{t-1}+e_{t}-\theta e_{t-1}$
(iii) $Y_{t}=(1+\phi) Y_{t-1}-\phi Y_{t-2}+e_{t}$
(iv) $Y_{t}=5+e_{t}-\frac{1}{2} e_{t-1}-\frac{1}{4} e_{t-2}$
(b) Verify that ($\max \rho_{1}=0.5 \mathrm{nd} \min \rho_{1}=0.5$ for $-\infty<\theta<\infty$) for an MA(1) process: $X_{t}=\varepsilon_{t}-\theta \varepsilon_{t-1}$ such that ε_{t} are independent noise processes.

